In cryptography, encryption is the process of encoding information or sensitive data so only authorized parties can access it. Encryption does not itself prevent interference and man-in-the-middle attacks, but denies intelligible content to the interceptor.
In an encryption scheme, the intended information or message, referred to as plaintext, is encrypted using an encryption algorithm (or cipher).
The output is known as ciphertext and can only be read using the decryption key.
In general, encryption algorithms fall into two categories:
In principle, it is possible to decrypt a message without the decryption key, but well-designed encryption schemes require considerable computational resources and skill to do so.
This means that if an unauthorized entity intercepted an encrypted message, they could only gain access if they knew what cipher was used to encrypt the message and the decryption key.
Today, many cryptographic processes employ symmetric algorithms (to encrypt data) and asymmetric algorithms (to securely exchange the secret key). This allows them to take advantage of the speed of symmetric-key encryption while maintaining the additional secrecy of public-key encryption.
The three major components of any encryption systems are:
Encryption is important because it allows you to protect data from unauthorized access. Encryption is foundational to cybersecurity, data security, information security and network security, due to its ability to provide:
Learn the difference between authenticity and non-repudiation.
Using encryption can prevent data breaches, data leaks, corporate espionage, brute force attacks and other cyber attacks. And depending on your industry, regulatory compliance may depend on data protection using encryption and other security measures.
For example:
Encryption has long been used by militaries and governments to facilitate secret communications.
Today, it is increasingly common in civilian systems to protect data in transit and at rest.
Every time you swipe your credit card or buy something online, you are relying on encryption to protect your payment information.
Outside of payments and ecommerce, organizations are increasingly relying on encryption to protect applications, trade secrets and customer information.
The increasing cost of data breaches, averaging $3.92 million globally and $8.19 million in the United States, highlights the need to protect the confidentiality, integrity and authenticity of sensitive data when other security measures fail. Not to mention regulatory and reputational damages.
Encryption is also be used to protect data in transit to prevent man-in-the-middle attacks and eavesdropping. For example, data that is being transferred via the Internet, smartphones, Bluetooth or ATMs.
Beyond securing data and communications, encryption can be used for secure data destruction.
Conventional methods for permanently deleting data from a hard drive rely on overwriting the device's content with zeros, ones or other patterns. This process can take time depending on the capacity and type of storage. Cryptography offerst a method of almost instantaneous erasure via crypto-shredding.
While encryption is an important tool, it is not sufficient to ensure the confidentiality, integrity or availability of sensitive information.
Most encryption software only encrypts information at rest or in transit, leaving sensitive data in plaintext and potentially vulnerable to exposure during processing, such as in a cloud service.
There are encryption processes that can compute on encrypted data (homomorphic encryption and secure multi-party computation), but these incur high computational and communication costs.
In response to encryption at rest, cyber criminals have developed new types of cyber attacks including cryptographic attacks, stolen ciphertext attacks, cryptanalysis, attacks on encryption keys, insider attacks, data integrity attacks, data destruction attacks and ransomware attacks.
Data fragmentation and data protection technologies attempt to counter these attacks by distributing, moving or mutating ciphertext so it is more difficult to identify, steal, corrupt or destroy.
Even with these technologies, the quality of your encryption doesn't matter if your third-party vendors and their vendors aren't using the same encryption standards as your organization.
This is why more organizations are investing in vendor risk management and cyber security ratings tools that can help them automatically monitor and assess first, third and fourth-party security postures.
These tools will allow your vendor risk team to focus on the most high risk, high impact remediations first and exponentially increase the number of third-party vendors one person can manage.
If your organization lacks vendor risk management expertise, consider investing in a tool that can automate vendor risk management, providing vendor risk assessment questionnaire templates and a third-party risk management framework.
Outside of vendor risk management, look for a tool to continuously scan for data exposures related to your business.
The other big limitation of encryption is key management because the keys to decrypt ciphertext have to exist somewhere and attackers often know where to look. There are plenty of best practices for key management, but it adds an extra layer of complexity to incident response planning and can increase the time it takes to start the disaster recovery process.
Encryption is one of the oldest forms of science.
From prehistoric times to modern times, there has always been a basic human desire to disguise, masquerade or protect sensitive information from unintended eyes.
The funny thing is despite advances in encryption algorithms and technology, the central problem of encryption remains the same.
The problem was and still is how to exchange keys securely and secretly. It all comes down to key management.
In 1900 BC, an Egyptian nobleman used a simple hieroglyphic substitution in the tomb of Khnumhotep, altering one symbol for another. A very simple form of encryption which could be figured out in a relatively short period of time.
By 700 BC, Sparta was using a new form of encryption called the scytale transposition cipher. This form of encryption changes the position of the letters in the document rather than changing the letters themselves.
The concept seems simple compared to modern encryption algorithms, but was very complicated at the time.
It consisted of a thin piece of papyrus wrapped around a round staff, the encryptor would then write their message down the length of the staff. When finished, they would wrap the papyrus.
To any observer the message was unreadable and looked like scribble. However, the recipient of the message would have an identical stick to the writer of the message and rewrap the papyrus, revealing the message.
Recall that very few people could write and read at the time, making this encryption method robust.
Fast forward to 1917 when the British intercepted an encrypted German transmission, the telegram now known as the "Zimmerman Telegram" was written by German Foreign Minister Arthur Zimmerman to the German Minister of Mexico, offering United States territory to Mexico if it joined Germany efforts.
This telegram was shown to the US by Britain, acting as a catalyst for the US to declare war on Germany and its allies on April 6, 1917.
During WWII, the Germans developed a machine known as Enigma that was a small wooden box small enough to be carried by a single soldier. When opened, the box revealed a small typewriter style keyboard. The encryption was completed by a set of three rotors, each could be set to any letter of the alphabet, forming the decryption key.
The three sets of rotors formed a much stronger and more complicated encryption algorithm than simple substitution. In addition, there were actually five standard rotors but only three could be used at a time, creating 60 different possible combinations.
The Germans would change the rotors and their starting positions every two days.
Alan Turning, a young mathematician working for the British government eventually build a machine called the Turing bombe to decipher the enigma.
It wasn't until 1976 that encryption began to be used outside of military settings with the introduction of IBM's Data Encryption Standard (DES) and a paper published by Whitfield Diffie and Martin Hellman titled New Directions in Cryptography.
The paper laid the groundwork to solve one of the fundamental issues of encryption schemes, how to distribute the encryption key in a safe and secure manner.
Today, encryption is widely used in and outside of the military.
Companies like Intercontinental Exchange, Taylor Fry, The New York Stock Exchange, IAG, First State Super, Akamai, Morningstar and NASA use UpGuard to protect their data, prevent data breaches, monitor for vulnerabilities and avoid malware.
We're experts in data breaches, our data breach research has been featured in the New York Times, Bloomberg, Washington Post, Forbes, Reuters and Techcrunch.
UpGuard Vendor Risk can minimize the amount of time your organization spends managing third-party relationships by automating vendor questionnaires and continuously monitoring your vendors' security posture over time while benchmarking them against their industry.
Each vendor is rated against 50+ criteria such as presence of SSL and DNSSEC, as well as risk of domain hijacking, man-in-the-middle attacks and email spoofing for phishing.
Each day, our platform scores your vendors with a Cyber Security Rating out of 950. We'll alert you if their score drops.
UpGuard Breach Risk can help monitor for DMARC, combat typosquatting, prevent data breaches and data leaks, avoiding regulatory fines and protecting your customer's trust through cyber security ratings and continuous exposure detection.